

KRvW
Associates

© 2007, Cigital & KRvW Associates

Introduction
SepAppDev 2007

KRvW
Associates

© 2007, Cigital & KRvW Associates

Contents of the Course
 Not so much in chronological order, but

 Security objectives
 Development process
 Mechanisms in current technologies
 Design
 Coding
 Quality assurance

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Problem

KRvW
Associates

© 2007, Cigital & KRvW Associates

Software vulnerability growth

Software Vulnerabilities

1090

2437

4129 3784 3780

5690

0

1000

2000

3000

4000

5000

6000

2000 2001 2002 2003 2004 2005

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Trinity Of Trouble:
Connectivity

 The Internet is everywhere
and most of our software is
on it

 When was the last time that
you did business with a
major vendor who had no
Internet connectivity?

 Tried VoIP on your mobile
phone in a coffee shop WiFi
hotspot yet?

The network is
the computer.

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Trinity Of Trouble:
Complexity�

 A simple user interface can
be enormously complex
“under the hood”

 Consider what happens
behind the scenes in one of
today’s AJAX web
applications

 But it sure does make for a
compelling “user
experience”

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Trinity Of Trouble:���
Extensibility

 Systems evolve in unexpected
ways and are changed on the
fly

 After all, who would want a
computing device that can’t be
functionally extended?

 From J2ME to desktop PC
users (running with
administrative privileges)

.NET

KRvW
Associates

© 2007, Cigital & KRvW Associates

The classic security tradeoff

Windows Complexity

0
5

10
15
20
25
30
35
40
45

Win
3.1

(1990)

Win
NT

(1995)

Win 95
(1997)

NT 4.0
(1998)

Win 98
(1999)

NT 5.0
(2000)

Win
2K

(2001)

XP
(2002)

Millions of Lines

KRvW
Associates

© 2007, Cigital & KRvW Associates

Learning from history
 We don’t pay enough attention

to our failures
 Consider other engineering

disciplines
 Transportation
 Construction
 Medical

KRvW
Associates

© 2007, Cigital & KRvW Associates

Focus on function
 Too much attention is paid to

functional spec
 Consider what can go wrong

as well

KRvW
Associates

© 2007, Cigital & KRvW Associates

KRvW
Associates

© 2007, Cigital & KRvW Associates

Security problems are complicated
CODE

 Buffer overflow
 String format
 One-stage attacks

 Race conditions
 TOCTOU (time of check to

time of use)
 Unsafe environment variables
 Unsafe system calls

 System()
 Untrusted input problems

DESIGN
 Misuse of software “feature”
 Flawed cryptographic key

management
 Compartmentalization problems in

design
 Catastrophic security failure

(fragility)
 Insecure or insufficient auditing
 Broken or illogical access control

(RBAC over tiers)
 Signing too much code

KRvW
Associates

© 2007, Cigital & KRvW Associates

Code example: The dreaded buffer overflow
 Overwriting the bounds of data

objects
 Allocate some bytes, but the

language doesn’t care if you try
to use more
 char x[12];
 x[12] = ‘\0’;

 Why was this done? Efficiency!
 Two main flavors of buffers

 Heap allocated buffers
 Stack allocated buffers
 Smashing the stack is the

most common attack

 The second most pervasive
security problem today in
terms of reported bugs

 Any guesses what problem
has overtaken it recently?

KRvW
Associates

© 2007, Cigital & KRvW Associates

Pervasive C problems
void main() {

char buf[1024];
gets(buf);

}

 How not to get input
 Attacker can

send an infinite
string!

 Chapter 7 of K&R
(page 164)

 Calls to watch out for

 Hundreds of such calls
 Use static analysis to find these

problems
 ITS4, Fortify

 Careful code review is
necessary

Instead of: Use:
gets(buf) fgets(buf, size, stdin)

strcpy(dst, src) strncpy(dst, src, n)

strcat(dst, src) strncat(dst, src, n)

sprintf(buf, fmt, a1,É) snprintf(buf, fmt, a1, n1,É)
(where available)

*scanf(É) Your own parsing

KRvW
Associates

© 2007, Cigital & KRvW Associates

Design example: Microsoft WMF
 Windows Metafile Format -- used for interchange of

data between programs
 Design feature included ability to include arbitrary

executable data along with a WMF file
 Feature was included to allow cancellation of

print files
 Attacker could send a WMF file with embedded

arbitrary executable code

KRvW
Associates

© 2007, Cigital & KRvW Associates

Breaking stuff is important
 Learning how to think like

an attacker is essential
 Do not shy away from

carrying out attacks on your
own stuff
 Engineers learn from

stories of failure
 Attacking is fun! Fun is

good!

KRvW
Associates

© 2007, Cigital & KRvW Associates

Solutions

KRvW
Associates

© 2007, Cigital & KRvW Associates

Software security: state of the practice
 Software security still in infancy

 Lacking standards
 Many “best practices” to

choose from
 Most have yet to really

prove themselves
 Information/guidance resources are

appearing quickly
 Study and adopt to your needs

 Tools are getting better, but
only cover coding defects
 Leave much to be done

manually

Software security is not security software!
Software security is about building things properly.

KRvW
Associates

© 2007, Cigital & KRvW Associates

What can be done?
Strive for the following criteria

 Repeatable
 Predictable
 Businesslike
 High quality
 Measurable

Must be firmly embedded into
entire existing dev process

without breaking it.

KRvW
Associates

© 2007, Cigital & KRvW Associates

Solution sets abound
Several “best practices” options to

choose from, including
 OWASP’s CLASP
 Microsoft’s SDL
 Cigital’s “touchpoints”

Each has strengths and weaknesses
 Best bet is to learn each and

adapt the aspects that work best
in your organization

 Alignment with extant build
process is vital

KRvW
Associates

© 2007, Cigital & KRvW Associates

Three pillars of software security
 Risk management framework
 Secure SDLC practices or “touchpoints”
 Knowledge catalog

KRvW
Associates

© 2007, Cigital & KRvW Associates

Why risk management?
 Business understands the idea of risk, even

software risk
 Technical perfection is impossible

 There is no such thing as 100% security
 Perfect quality is a myth

 Technical problems do not always spur action
 Answer the “So what?” question explicitly

 Help customers understand what they should do
about software risk

 Build better software

So what?

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Cigital risk management framework

KRvW
Associates

© 2007, Cigital & KRvW Associates

Software security touchpoints

KRvW
Associates

© 2007, Cigital & KRvW Associates

Knowledge catalogs
 Principles
 Guidelines
 Rules
 Attack patterns
 Vulnerabilities
 Historical Risks

KRvW
Associates

© 2007, Cigital & KRvW Associates

Knowledge map

KRvW
Associates

© 2007, Cigital & KRvW Associates

Managing knowledge
 Perhaps the toughest hurdle

 Combines people, skills,
experience, etc.

 Training helps, but there is
no substitute for experience

 Start with clear targets in mind
 Train to get started
 Hire qualified people

 Mentoring is vital
 Apprenticeship still plays its

roll

KRvW
Associates

© 2007, Cigital & KRvW Associates

Will this stuff work?
When applied thoughtfully, there is

no reason that you can’t
produce measurable
improvements in your software
 Don’t get too hung up on

process
 Take small steps towards

your goal
 Start measuring

immediately

If you can’t measure it, how can
you manage it?

